

Computer Science \& Engineering

Data Communication and Computer
Networks
(MTCSE-101-A)

Network Layer: Logical Addressing

19-1 IPv4 ADDRESSES

An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet.

Topics discussed in this section:

Address Space
Notations
Classful Addressing
Classless Addressing
Network Address Translation (NAT)

Note

An IPv4 address is 32 bits long.

Note

The IPv4 addresses are unique and universal.

Note

The address space of IPv4 is 2^{32} or $4,294,967,296$.

Figure 19.1 Dotted-decimal notation and binary notation for an IPv4 address

Example 19.1

Change the following IPv4 addresses from binary notation to dotted-decimal notation.

a. 10000001000010110000101111101111
 b. 11000001100000110001101111111111

Solution
We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation.
a. 129.11.11.239
b. 193.131.27.255

Example 19.2

Change the following IPv4 addresses from dotted-decimal notation to binary notation.
a. 111.56.45.78
b. 221.34.7.82

Solution
We replace each decimal number with its binary equivalent (see Appendix B).
a. 01101111001110000010110101001110
b. 11011101001000100000011101010010

Example 19.3

Find the error, if any, in the following IPv4 addresses. a. 111.56.045.78
b. 221.34.7.8.20
c. 75.45 .301 .14
d. 11100010.23.14.67

Note

In classful addressing, the address space is divided into five classes:

A, B, C, D, and E.

- Each computer (host) must have a unique network address (or IP address for TCP/IP suite)
- Each IP address is 32 -bit long (four bytes)
- The four-byte address is written out as a.b.c.d
e.g.

- IP addresses are hierarchical - network I.D. and host I.D.
- Each Network I.D. on the Internet needs to be registered to the Internet Assigned Number Authority

Class A - for very large network

1 bit	7 bits	
0	Net I.D.	Host I.D.

- Only 2^{7} (128) networks caņbelong to this class
- Each network, there are $2{ }^{24}$ hosts or computers
- Very few class A networks in the world
e.g. Arpanet - the earliest packet switched WAN (started 40 years ago)

Class B - for medium size network

- 2^{14} (16384) networks can, belong to this class
- Each network, there are 2 (65536) hosts or computers
- e.g. 158.132.14.1

Network I.D.
Host I.D.

Class C - for small network

3 bits		21 bits	8 bits	
1	1	0	Net I.D.	Host I.D.

- 2^{21} networks can belong to this class
- Each network, there are only 2 (256) hosts or computers

Class D - for multicast network

4 bits				28 bits
1	1	1	0	Group no.

- Packets are addressed to a multicast group
- Not often supported on Internet

Special Addresses

- Host I.D. $=$ all '1's \Rightarrow Directed broadcast
"Broadcast to all hosts in the network or subnetwork"
- Host I.D. $=$ all '0’s \Rightarrow "This network", not assigned
- Network I.D. = 127 is reserved for loopback and diagnostic purposes, not assigned
- Network I.D. + Host I.D. = all '1's \Rightarrow Limited broadcast
"Broadcast to all hosts in the current network", not assigned

Figure 19.2 Finding the classes in binary and dotted-decimal notation

a. Binary notation

b. Dotted-decimal notation

Example 19.4

Find the class of each address.
a. $\quad \underline{0} 000001000010110000101111101111$
b. $\underline{11000001100000110001101111111111}$
c. 14.23.120.8
d. 252.5.15.111

Table 19.1 Number of blocks and block size in classful IPv4 addressing

Class	Number of Blocks	Block Size	Application
A	128	$16,777,216$	Unicast
B	16,384	65,536	Unicast
C	$2,097,152$	256	Unicast
D	1	$268,435,456$	Multicast
E	1	$268,435,456$	Reserved

Note

In classful addressing, a large part of the available addresses were wasted.

Table 19.2 Default masks for classful addressing

| Class | Binary | Dotted-Decimal | CIDR |
| :---: | :---: | :---: | :---: | :---: |
| A | $\mathbf{1 1 1 1 1 1 1 1 1} 000000000000000000000000$ | $\mathbf{2 5 5 . 0 . 0 . 0}$ | $/ 8$ |
| B | $\mathbf{1 1 1 1 1 1 1 1} \mathbf{1 1 1 1 1 1 1 1} 0000000000000000$ | $\mathbf{2 5 5 . 2 5 5 . 0 . 0}$ | $/ 16$ |
| C | $\mathbf{1 1 1 1 1 1 1 1} \mathbf{1 1 1 1 1 1 1 1} \mathbf{1 1 1 1 1 1 1 1} 00000000$ | $\mathbf{2 5 5 . 2 5 5 . 2 5 5 . 0}$ | $/ 24$ |

Note

Classful addressing, which is almost obsolete, is replaced with classless addressing.

Example 19.5

Figure 19.3 shows a block of addresses, in both binary and dotted-decimal notation, granted to a small business that needs 16 addresses.

We can see that the restrictions are applied to this block. The addresses are contiguous. The number of addresses is a power of $2\left(16=2^{4}\right)$, and the first address is divisible by 16. The first address, when converted to a decimal number, is 3,440,387,360, which when divided by 16 results in 215,024,210.

Figure 19.3 A block of 16 addresses granted to a small organization

Block

Block

Note

In IPv4 addressing, a block of addresses can be defined as
x.y.z.t /n
in which x.y.z.t defines one of the addresses and the $/ n$ defines the mask.

Note

The first address in the block can be found by setting the rightmost $32-n$ bits to 0 s.

Example 19.6

A block of addresses is granted to a small organization. We know that one of the addresses is 205.16.37.39/28. What is the first address in the block?

Solution

The binary representation of the given address is 11001101000100000010010100100111
If we set 32-28 rightmost bits to 0 , we get
1100110100010000001001010010000

$$
\begin{gathered}
o r \\
\text { 205.16.37.32. }
\end{gathered}
$$

This is actually the block shown in Figure 19.3.

Note

The last address in the block can be found by setting the rightmost $32-\mathrm{n}$ bits to 1 s .

Example 19.7

Find the last address for the block in Example 19.6.

Solution
The binary representation of the given address is 11001101000100000010010100100111
If we set $32-28$ rightmost bits to 1 , we get 11001101000100000010010100101111

$$
\begin{gathered}
\text { or } \\
205.16 .37 .47
\end{gathered}
$$

This is actually the block shown in Figure 19.3.

Note

The number of addresses in the block can be found by using the formula 2^{32-n}.

Example 19.8

Find the number of addresses in Example 19.6.

Solution
The value of n is 28, which means that number of addresses is 2^{32-28} or 16 .

Example 19.9

Another way to find the first address, the last address, and the number of addresses is to represent the mask as a 32-bit binary (or 8-digit hexadecimal) number. In Example 19.5 the $/ 28$ can be represented as

$$
11111111111111111111111111110000
$$

(twenty-eight 1s and four $0 s$).

Find
a. The first address
b. The last address
c. The number of addresses.

Example 19.9 (continued)

Solution
a. The first address can be found by ANDing the given addresses with the mask. ANDing here is done bit by bit. The result of ANDing 2 bits is 1 if both bits are 1 s; the result is 0 otherwise.

| Address: | 11001101 | 00010000 | 00100101 | 00100111 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mask: | $\mathbf{1 1 1 1 1 1 1 1}$ | $\mathbf{1 1 1 1 1 1 1 1}$ | $\mathbf{1 1 1 1 1 1 1 1}$ | $\mathbf{1 1 1 1 0 0 0 0}$ |
| First address: | 11001101 | 00010000 | 00100101 | 00100000 |

Example 19.9 (continued)

b. The last address can be found by ORing the given addresses with the complement of the mask. ORing here is done bit by bit. The result of ORing 2 bits is 0 if both bits are Os; the result is 1 otherwise. The complement of a number is found by changing each 1 to 0 and each 0 to 1 .

| Address: | 11001101 | 00010000 | 00100101 | 00100111 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mask complement: | $\mathbf{0 0 0 0 0 0 0 0}$ | $\mathbf{0 0 0 0 0 0 0 0}$ | $\mathbf{0 0 0 0 0 0 0 0}$ | $\mathbf{0 0 0 0 1 1 1 1}$ |
| Last address: | 11001101 | 00010000 | 00100101 | 00101111 |

Example 19.9 (continued)

c. The number of addresses can be found by complementing the mask, interpreting it as a decimal number, and adding 1 to it.

Mask complement: $\quad \mathbf{0 0 0 0 0 0 0 0 0} 000000000000000000001111$
Number of addresses: $15+1=16$

Figure 19.4 A network configuration for the block 205.16.37.32/28

Note

The first address in a block is normally not assigned to any device; it is used as the network address that represents the organization to the rest of the world.

Figure 19.5 Two levels of hierarchy in an IPv4 address

Figure 19.6 A frame in a character-oriented protocol

28 bits	4 bits
	Network prefix
	Host address

Note

Each address in the block can be considered as a two-level hierarchical structure:
the leftmost n bits (prefix) define the network;
the rightmost $32-\mathrm{n}$ bits define the host.

Figure 19.7 Configuration and addresses in a subnetted network

Figure 19.8 Three-level hierarchy in an IPv4 address

Subnet 1

Subnets 2 and 3

26 bits	2	4 bits
Network prefix		
Subnet prefix		1
Host address		

Example 19.10

An ISP is granted a block of addresses starting with 190.100.0.0/16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows:
a. The first group has 64 customers; each needs 256 addresses.
b. The second group has 128 customers; each needs 128 addresses.
c. The third group has 128 customers; each needs 64 addresses.
Design the subblocks and find out how many addresses are still available after these allocations.

Example 19.10 (continued)

Solution
Figure 19.9 shows the situation.
Group 1
For this group, each customer needs 256 addresses. This means that 8 (log2 256) bits are needed to define each host. The prefix length is then $32-8=24$. The addresses are

```
1st Customer: 190.100.0.0/24 190.100.0.255/24
2nd Customer: 190.100.1.0/24 190.100.1.255/24
64th Customer: 190.100.63.0/24 190.100.63.255/24
Total = 64\times256=16,384
```


Example 19.10 (continued)

Group 2
For this group, each customer needs 128 addresses. This means that 7 (log2 128) bits are needed to define each host. The prefix length is then $32-7=25$. The addresses are

1st Customer:	$190.100 .64 .0 / 25$	$190.100 .64 .127 / 25$
2nd Customer:	$190.100 .64 .128 / 25$	$190.100 .64 .255 / 25$
$\quad \ldots$		
128th Customer: $190.100 .127 .128 / 25$	$190.100 .127 .255 / 25$	
Total $=128 \times 128=16,384$		

Example 19.10 (continued)

Group 3
For this group, each customer needs 64 addresses. This means that 6 ($\left.\log _{2} 64\right)$ bits are needed to each host. The prefix length is then $32-6=26$. The addresses are

```
1st Customer: 190.100.128.0/26 190.100.128.63/26
2nd Customer: 190.100.128.64/26 190.100.128.127/26
128th Customer: 190.100.159.192/26 190.100.159.255/26
Total = 128\times64=8192
```

Number of granted addresses to the ISP: 65,536 Number of allocated addresses by the ISP: 40,960 Number of available addresses: 24,576

Figure 19.9 An example of address allocation and distribution by an ISP

Network Address Translation

- Each organizationsingle IP address
- Within organization each host with IP unique to the orgn., from reserved set of IP addresses

NAT Example

Source Computer	Source Computer's IP Address	Source Computer's Port	NAT Router's IP Address	NAT Router's Assigned Port Number
A	10.0 .0 .1	400	24.2 .249 .4	1
B	10.0 .0 .2	50	24.2 .249 .4	2
C	10.0 .0 .3	3750	24.2 .249 .4	3
D	10.0 .0 .4	206	24.2 .249 .4	4

Table 19.3 Addresses for private networks

Range			Total
10.0 .0 .0	to	10.255 .255 .255	2^{24}
172.16 .0 .0	to	172.31 .255 .255	2^{20}
192.168 .0 .0	to	192.168 .255 .255	2^{16}

Figure 19.10 A NAT implementation

Site using private addresses

Figure 19.11 Addresses in a NAT

Figure 19.12 NAT address translation

19-2 IPv6 ADDRESSES

Despite all short-term solutions, address depletion is still a long-term problem for the Internet. This and other problems in the IP protocol itself have been the motivation for IPv6.

Topics discussed in this section:
Structure
Address Space

Note
An IPv6 address is 128 bits long.

Figure 19.14 IPv6 address in binary and hexadecimal colon notation

Figure 19.15 Abbreviated IPv6 addresses

Original

Example 19.11

Expand the address 0:15::1:12:1213 to its original.

Solution
We first need to align the left side of the double colon to the left of the original pattern and the right side of the double colon to the right of the original pattern to find how many Os we need to replace the double colon.

```
XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX
    0: 15: : 1: 12:1213
```

This means that the original address is.
0000:0015:0000:0000:0000:0001:0012:1213

Header comparison

Removed (6)

- ID, flags, flag offset
- TOS, hlen
- header checksum

Changed (3)

- total length => payload
- protocol => next header
- TTL => hop limit

Added (2)

- traffic class
- flow label

Expanded

- address 32 to 128 bits

IPv6

Major Improvements of IPv6 Header

- No option field: Replaced by extension header. Result in a fixed length, 40-byte IP header.
- No header checksum: Result in fast processing.
- No fragmentation at intermediate nodes: Result in fast IP forwarding.

Extension Headers

- Routing - Extended routing, like IPv4 loose list of routers to visit
- Fragmentation - Fragmentation and reassembly
- Authentication - Integrity and authentication, security
- Encapsulation - Confidentiality
- Hop-by-Hop Option - Special options that require hop-by-hop processing
- Destination Options - Optional information to be examined by the destination node

Table 19.5 Type prefixes for IPv6 addresses

Type Prefix	Type	Fraction
00000000	Reserved	$1 / 256$
00000001	Unassigned	$1 / 256$
0000001	ISO network addresses	$1 / 128$
0000010	IPX (Novell) network addresses	$1 / 128$
0000011	Unassigned	$1 / 128$
00001	Unassigned	$1 / 32$
0001	Reserved	$1 / 16$
001	Reserved	$1 / 8$
$\mathbf{0 1 0}$	Provider-based unicast addresses	$\mathbf{1} / \mathbf{8}$

Table 19.5 Type prefixes for IPv6 addresses (continued)

Type Prefix	Type	Fraction
011	Unassigned	$1 / 8$
100	Geographic-based unicast addresses	$1 / 8$
101	Unassigned	$1 / 8$
110	Unassigned	$1 / 8$
1110	Unassigned	$1 / 16$
11110	Unassigned	$1 / 32$
111110	Unassigned	$1 / 64$
1111110	Unassigned	$1 / 128$
111111100	Unassigned	$1 / 512$
1111111010	Link local addresses	$1 / 1024$
1111111011	Site local addresses	$1 / 1024$
11111111	Multicast addresses	$1 / 256$

Figure 19.16 Prefixes for provider-based unicast address

Registry

Figure 19.17 Multicast address in IPv6

Figure 19.18 Reserved addresses in IPv6

8 bits				a. Unspecified
00000000	All Os			
8 bits	120 bits			b. Loopback
00000000	00000000000000000.............. 00000000001			
8 bits	88 bits		32 bits	c. Compatible
00000000	All Os		IPv4 address	
8 bits	72 bits	16 bits	32 bits	d. Mapped
00000000	All Os	All 1 s	IPv4 address	

Figure 19.19 Local addresses in IPv6

10 bits	70 bits		48 bits	
1111111010	All 0 s		Node address	a. Link local
10 bits	38 bits	32 bits	48 bits	
1111111011	All 0 s	Subnet address	Node address	b. Site local

